Human navigation has been a topic of interest in spatial cognition from the past few decades. It has been experimentally observed that humans accomplish the task of way-finding a destination in an unknown environment by recognizing landmarks. Investigations using network analytic techniques reveal that humans, when asked to way-find their destination, learn the top ranked nodes of a network. In this paper... (more)
Most of the networks observed in real life obey power-law degree distribution. It is hypothesized that the emergence of such a degree distribution is due to preferential attachment of the nodes. Barabasi-Albert model is a generative procedure that uses preferential attachment based on degree and one can use this model to generate networks with power-law degree distribution. In this model, the network is assumed to grow one node every time step. After the evolution... (more)
Network based Idiosyncratic and Collaborative Recommendation
Personalized Recommendations serve as an important ingredient for several web based systems. These systems generally house a knowledge base containing the metadata about items and users. In this paper, we present an approach for the purpose of... (more)